Problem

Source: Russian TST 2022, Day 8 P3

Tags: algebra, Inequality



Let $n\geqslant 3$ be an integer and $x_1>x_2>\cdots>x_n$ be real numbers. Suppose that $x_k>0\geqslant x_{k+1}$ for an index $k{}$. Prove that \[\sum_{i=1}^k\left(x_i^{n-2}\prod_{j\neq i}\frac{1}{x_i-x_j}\right)\geqslant 0.\]