Problem

Source: Russian TST 2022, Day 7 P2

Tags: geometry, Concyclic, incircle



The quadrilateral $ABCD$ is inscribed in the circle $\Gamma$. Let $I_B$ and $I_D$ be the centers of the circles $\omega_B$ and $\omega_D$ inscribed in the triangles $ABC$ and $ADC$, respectively. A common external tangent to $\omega_B$ and $\omega_D$ intersects $\Gamma$ at $K$ and $L{}$. Prove that $I_B,I_D,K$ and $L{}$ lie on the same circle.