Problem

Source: Oliforum math contest, problem 3

Tags: geometry, incenter, circumcircle, search, cyclic quadrilateral, angle bisector



Let a cyclic quadrilateral $ ABCD$, $ AC \cap BD = E$ and let a circle $ \Gamma$ internally tangent to the arch $ BC$ (that not contain $ D$) in $ T$ and tangent to $ BE$ and $ CE$. Call $ R$ the point where the angle bisector of $ \angle ABC$ meet the angle bisector of $ \angle BCD$ and $ S$ the incenter of $ BCE$. Prove that $ R$, $ S$ and $ T$ are collinear. (Gabriel Giorgieri)