Problem

Source: Oliforum math contest, problem 2

Tags: inequalities, inequalities proposed



Define $ \phi$ the positive real root of $ x^2 - x - 1$ and let $ a,b,c,d$ be positive real numbers such that $ (a + 2b)^2 = 4c^2 + 1$. Show that $ \displaystyle 2d^2 + a^2\left(\phi - \frac {1}{2}\right) + b^2\left(\frac {1}{\phi - 1} + 2\right) + 2 \ge 4(c - d) + 2\sqrt {d^2 + 2d}$ and find all cases of equality. (A.Naskov)