Problem

Source: Oliforum math contest, problem 1

Tags: function, modular arithmetic, number theory, prime factorization, number theory proposed



Let $ \sigma(\cdot): \mathbb{N}_0 \to \mathbb{N}_0$ be the function from every positive integer $ n$ to the sum of divisors $ \sum_{d \mid n}{d}$ (i.e. $ \sigma(6) = 6 + 3 + 2 + 1$ and $ \sigma(8) = 8 + 4 + 2 + 1$). Find all primes $ p$ such that $ p \mid \sigma(p - 1)$. (Salvatore Tringali)