Problem

Source: Own, from Oliforum math contest, problem 5

Tags: induction, modular arithmetic, linear algebra, matrix, vector, algebra, system of equations



Let $ X: = \{x_1,x_2,\ldots,x_{29}\}$ be a set of $ 29$ boys: they play with each other in a tournament of Pro Evolution Soccer 2009, in respect of the following rules: i) every boy play one and only one time against each other boy (so we can assume that every match has the form $ (x_i \text{ Vs } x_j)$ for some $ i \neq j$); ii) if the match $ (x_i \text{ Vs } x_j)$, with $ i \neq j$, ends with the win of the boy $ x_i$, then $ x_i$ gains $ 1$ point, and $ x_j$ doesn’t gain any point; iii) if the match $ (x_i \text{ Vs } x_j)$, with $ i \neq j$, ends with the parity of the two boys, then $ \frac {1}{2}$ point is assigned to both boys. (We assume for simplicity that in the imaginary match $ (x_i \text{ Vs } x_i)$ the boy $ x_i$ doesn’t gain any point). Show that for some positive integer $ k \le 29$ there exist a set of boys $ \{x_{t_1},x_{t_2},\ldots,x_{t_k}\} \subseteq X$ such that, for all choice of the positive integer $ i \le 29$, the boy $ x_i$ gains always a integer number of points in the total of the matches $ \{(x_i \text{ Vs } x_{t_1}),(x_i \text{ Vs } x_{t_2}),\ldots, (x_i \text{ Vs } x_{t_k})\}$. (Paolo Leonetti)