Two players play a game on four piles of pebbles labeled with the numbers $1,2,3,4$ respectively. The players take turns in an alternating fashion. On his or her turn, a player selects integers $m$ and $n$ with $1\leq m<n\leq 4$, removes $m$ pebbles from pile $n$, and places one pebble in each of the piles $n-1,n-2,\dots,n-m$. A player loses the game if he or she cannot make a legal move. For each starting position, determine the player with a winning strategy.