Problem

Source: Dürer Competition Finals 2023/E+ 4

Tags: geometry, 3D geometry, pyramid



For a given integer $n\geq2$, a pyramid of height $n$ if defined as a collection of $1^2+2^2+\dots+n^2$ stone cubes of equal size stacked in $n$ layers such that the cubes in the $k$-th layer form a square with sidelength $n+1-k$ and every cube (except for the ones in the bottom layer) rests on four cubes in the layer below. Some of the cubes are made of sandstone, some are made of granite. The top cube is made of granite, and to ensure the stability of the piramid, for each granite cube (except for the ones in the bottom layer), at least three out of four of the cubes supporting it have to be granite. What is the minimum possible number of granite cubes in such an arrangement?