Problem

Source: Turkey Olympic Revenge 2023 P5

Tags: combinatorics, Game Theory, combinatorial game theory, olympic revenge



There are $10$ cups, each having $10$ pebbles in them. Two players $A$ and $B$ play a game, repeating the following in order each move: $\bullet$ $B$ takes one pebble from each cup and redistributes them as $A$ wishes. $\bullet$ After $B$ distributes the pebbles, he tells how many pebbles are in each cup to $A$. Then $B$ destroys all the cups having no pebbles. $\bullet$ $B$ switches the places of two cups without telling $A$. After finitely many moves, $A$ can guarantee that $n$ cups are destroyed. Find the maximum possible value of $n$. (Note that $A$ doesn't see the cups while playing.) Proposed by Emre Osman