Problem

Source: Turkey Olympic Revenge 2023 P1

Tags: functional equation, function, function in R, olympic revenge, algebra



Find all $c\in \mathbb{R}$ such that there exists a function $f:\mathbb{R}\to \mathbb{R}$ satisfying $$(f(x)+1)(f(y)+1)=f(x+y)+f(xy+c)$$for all $x,y\in \mathbb{R}$. Proposed by Kaan Bilge