Problem

Source: 2023 RMM, Problem 4

Tags: geometry, RMM 2023, inequalities, Geometry inequality



An acute triangle $ABC$ is given and $H$ and $O$ be its orthocenter and circumcenter respectively. Let $K$ be the midpoint of $AH$ and $\ell$ be a line through $O. $ Let $P$ and $Q$ be the projections of $B$ and $C$ on $\ell. $ Prove that$$KP+KQ\ge BC$$