Problem

Source: 2023 RMM, Problem 2

Tags: combinatorics, RMM 2023



Fix an integer $n \geq 3$. Let $\mathcal{S}$ be a set of $n$ points in the plane, no three of which are collinear. Given different points $A,B,C$ in $\mathcal{S}$, the triangle $ABC$ is nice for $AB$ if $[ABC] \leq [ABX]$ for all $X$ in $\mathcal{S}$ different from $A$ and $B$. (Note that for a segment $AB$ there could be several nice triangles). A triangle is beautiful if its vertices are all in $\mathcal{S}$ and is nice for at least two of its sides. Prove that there are at least $\frac{1}{2}(n-1)$ beautiful triangles.