Problem

Source: Own. Malaysian APMO CST 2023 P2

Tags: combinatorics



Ivan is playing Lego with $4n^2$ $1 \times 2$ blocks. First, he places $2n^2$ $1 \times 2$ blocks to fit a $2n \times 2n$ square as the bottom layer. Then he builds the top layer on top of the bottom layer using the remaining $2n^2$ $1 \times 2$ blocks. Note that the blocks in the bottom layer are connected to the blocks above it in the top layer, just like real Lego blocks. He wants the whole two-layered building to be connected and not in seperate pieces. Prove that if he can do so, then the four $1\times 2$ blocks connecting the four corners of the bottom layer, must be all placed horizontally or all vertically. Proposed by Ivan Chan Kai Chin