Let $O{}$ be the circumcenter of an acute triangle $ABC$. Let $M{}$ be the midpoint of $AC$. The straight line $BO$ intersects the altitudes $AA_1{}$ and $CC_1{}$ at the points $H_a$ and $H_c$ respectively. The circumcircles of the triangles $BH_aA$ and $BH_cC$ have a second point of intersection $K{}$. Prove that $K{}$ lies on the straight line $BM$. Mikhail Evdokimov
Problem
Source: 42nd International Tournament of Towns, Senior O-Level P5, Spring 2021
Tags: geometry, Tournament of Towns