Problem

Source: 43rd International Tournament of Towns, Junior A-Level P6, Fall 2021

Tags: inequalities, algebra, Tournament of Towns



Prove that for any positive integers $a_1, a_2, \ldots , a_n$ the following inequality holds true: \[\left\lfloor\frac{a_1^2}{a_2}\right\rfloor+\left\lfloor\frac{a_2^2}{a_3}\right\rfloor+\cdots+\left\lfloor\frac{a_n^2}{a_1}\right\rfloor\geqslant a_1+a_2+\cdots+a_n.\]Maxim Didin