Problem

Source: 44th International Tournament of Towns, Senior A-Level P7, Fall 2022

Tags: combinatorics, geometry, Tournament of Towns



There are $N{}$ friends and a round pizza. It is allowed to make no more than $100{}$ straight cuts without shifting the slices until all cuts are done; then the resulting slices are distributed among all the friends so that each of them gets a share off pizza having the same total area. Is there a cutting which gives the above result if a) $N=201$ and b) $N=400$?