Consider two concentric circles $\Omega$ and $\omega$. Chord $AD$ of the circle $\Omega$ is tangent to $\omega$. Inside the minor disk segment $AD$ of $\Omega$, an arbitrary point $P{}$ is selected. The tangent lines drawn from the point $P{}$ to the circle $\omega$ intersect the major arc $AD$ of the circle $\Omega$ at points $B{}$ and $C{}$. The line segments $BD$ and $AC$ intersect at the point $Q{}$. Prove that the line segment $PQ$ passes through the midpoint of line segment $AD$. Note. A circle together with its interior is called a disk, and a chord $XY$ of the circle divides the disk into disk segments, a minor disk segment $XY$ (the one of smaller area) and a major disk segment $XY$.
Problem
Source: 44th International Tournament of Towns, Senior A-Level P3, Fall 2022
Tags: geometry, Tournament of Towns