Is it possible to colour all integers greater than $1{}$ in three colours (each integer in one colour, all three colours must be used) so that the colour of the product of any two differently coloured numbers is different from the colour of each of the factors?
Problem
Source: 44th International Tournament of Towns, Junior O-Level P4, Fall 2022
Tags: number theory, combinatorics, Tournament of Towns
19.02.2023 22:13
The answer is: the requested colouring is not possible. Assume by contrary that such a colouring is possible. Consider the numbers are coloured in: red, green, blue. Denote: $A=\{x\in\mathbb{N}\setminus\{1\}|x\text{ is red}\}$; $B=\{y\in\mathbb{N}\setminus\{1\}|y\text{ is green}\}$; $C=\{z\in\mathbb{N}\setminus\{1\}|z\text{ is blue}\}$. From the initial conditions results: $A\cup B\cup C=\mathbb{N}\setminus\{1\};\;A\cap B=A\cap C=B\cap C=\phi$; $x\in A,\;y\in B\Longrightarrow xy\in C;\;x\in A,\;z\in C\Longrightarrow xz\in B;\;y\in B,\;z\in C\Longrightarrow yz\in A$. $\textbf{Claim 1: }$ Let be $p\in A$ a prime number. Then $p^n\in A,\;\forall n\in\mathbb{N}$. Proof: Assume exists $k\in\mathbb{N}\setminus\{1\}$ such that $p^k\in B$. $p\in A,\;p^k\in B\Longrightarrow p^{k+1}\in C$; $p\in A,\;p^{k+1}\in C\Longrightarrow p^{k+2}\in B$. By induction: $p^m\in B\cup C,\;\forall m\ge k\quad(1)$. On the other hand: $p^k\in B,\; p^{k+1}\in C\Longrightarrow p^{2k+1}\in A$, contradiction with (1). Hence, the assumption is false and results the claim. $\textbf{Claim 2: }$ Let be $p\in A$ a prime number. Then $q^n\in A,\;\forall q$ prime number and $\forall n\in\mathbb{N}$. Proof: Assume exists the prime number $q$ such that $q\in B$. $p\in A,\;q\in B\Longrightarrow pq\in C$; $p\in A,\;pq\in C\Longrightarrow p^2q\in B\quad(2)$; $p\in A\Longrightarrow \text{ (Claim 1) }p^2\in A$; $p^2\in A,\;q\in B\Longrightarrow p^2q\in C$, contradiction with (2). Hence, the assumption is false and results $q\in A,\;\forall q$ prime number. Applying the Claim 1, results: $q^n\in A,\;\forall q$ prime number and $\forall n\in\mathbb{N}$. Using the claims 1 and 2, results: all prime numbers and their powers belong to the same set $A,B$ or $C$. Assume $p^n\in A,\;\forall p$ prime number and $n\in\mathbb{N}$ and let be $N\in B$. Results: $\exists m\in\mathbb{N}\setminus\{1\};\;p_1,p_2,\dots,p_m$ pairwise distinct prime numbers$;\;\alpha_1,\alpha_2,\dots,\alpha_m\in\mathbb{N}$ such that $N=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot...p_m^{\alpha_m}$. $p_1\in A,\;p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot...p_m^{\alpha_m}\in B\Longrightarrow p_1^{\alpha_1+1}\cdot p_2^{\alpha_2}\cdot...p_m^{\alpha_m}\in C$; $p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot...p_m^{\alpha_m}\in B,\;p_1^{\alpha_1+1}\cdot p_2^{\alpha_2}\cdot...p_m^{\alpha_m}\in C\Longrightarrow p_1^{2\alpha_1+1}\cdot p_2^{2\alpha_2}\cdot...p_m^{2\alpha_m}\in A\quad(3)$. On the other hand: $p_1^{\alpha+1}\in A,\;p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot...\cdot p_m^{\alpha_m}\in B\Longrightarrow p_1^{2\alpha_1+1}\cdot p_2^{\alpha_2}\cdot...\cdot p_m^{\alpha_m}\in C$; $p_2^{\alpha_2}\in A,\;p_1^{2\alpha_1+1}\cdot p_2^{\alpha_2}\cdot...\cdot p_m^{\alpha_m}\in C\Longrightarrow p_1^{2\alpha_1+1}\cdot p_2^{2\alpha_2}\cdot p_3^{\alpha_3}\cdot...\cdot p_m^{\alpha_m}\in B$. Using successively $p_3^{\alpha_3},...,p_m^{\alpha_m}\in A$ and the partial products are elements of $ B\cup C$, we obtain finally $p_1^{2\alpha_1+1}\cdot p_2^{2\alpha_2}\cdot...\cdot p_m^{2\alpha_m}\in B\cup C$, contradiction with (3). Conclusion: It is not possible to colour all integers greater than $1{}$ in three colours such that the colour of the product of any two differently coloured numbers is different from the colour of each of the factors.
19.02.2023 22:30
Fix a number $x$. Say $x$ is red. Then if some $x^k$ is blue, after that $x^{k+1}$ is green, $x^{k+2}$ is blue again, and so on. Likewise if some $x^k$ is green, you get $x^{k+1}$ is blue and it alternates. So if some $x^k$ is not red, eventually they alternate between blue and green. This is a contradiction, as for large $n$, we have $x^n, x^{n+1}$ are blue and green in some order but $x^{2n+1}$ is blue or green and is thus not red. So if $x$ is some color, then all powers of $x$ are also that color. In particular, $2$ and $4$ are the same color. WLOG it's red. Now, take $x$ that is not red, WLOG it is blue, then $2x$ is green, and $4x$ must be blue (because of $2x$ and $2$) and also green (because of both $x$ and $4$). We are done.