Problem

Source: ARO Regional stage 2023 11.5

Tags: geometry, Russia



Given is a triangle $ABC$ with altitude $AH$ and median $AM$. The line $OH$ meets $AM$ at $D$. Let $AB \cap CD=E, AC \cap BD=F$. If $EH$ and $FH$ meet $(ABC)$ at $X, Y$, prove that $BY, CX, AH$ are concurrent.