Problem

Source: ARO Regional stage 2023 11.4

Tags: number theory, Russia



We write pairs of integers on a blackboard. Initially, the pair $(1,2)$ is written. On a move, if $(a, b)$ is on the blackboard, we can add $(-a, -b)$ or $(-b, a+b)$. In addition, if $(a, b)$ and $(c, d)$ are written on the blackboard, we can add $(a+c, b+d)$. Can we reach $(2022, 2023)$?