Problem

Source: ARO Regional stage 2023 9.5

Tags: geometry, Russia



Let $ABCD$ be a cyclic quadrilateral such that the circles with diameters $AB$ and $CD$ touch at $S$. If $M, N$ are the midpoints of $AB, CD$, prove that the perpendicular through $M$ to $MN$ meets $CS$ on the circumcircle of $ABCD$.