Let $a_0,a_1,\dots$ be a sequence of positive reals such that $$ a_{n+2} \leq \frac{2023a_n}{a_na_{n+1}+2023}$$for all integers $n\geq 0$. Prove that either $a_{2023}<1$ or $a_{2024}<1$.
Source: 2023 Thailand Online MO P7
Tags: Inequality, algebra
Let $a_0,a_1,\dots$ be a sequence of positive reals such that $$ a_{n+2} \leq \frac{2023a_n}{a_na_{n+1}+2023}$$for all integers $n\geq 0$. Prove that either $a_{2023}<1$ or $a_{2024}<1$.