Problem

Source: 2023 Thailand Online MO P5

Tags: number theory, Number theoretic functions, Arithmetic Functions, functional equation



For each positive integer $k$, let $d(k)$ be the number of positive divisors of $k$ and $\sigma(k)$ be the sum of positive divisors of $k$. Let $\mathbb N$ be the set of all positive integers. Find all functions $f: \mathbb{N} \to \mathbb N$ such that \begin{align*} f(d(n+1)) &= d(f(n)+1)\quad \text{and} \\ f(\sigma(n+1)) &= \sigma(f(n)+1) \end{align*}for all positive integers $n$.