Problem

Source: IZHO 2023 P3

Tags: number theory, Polynomials



Let $a_1, a_2, \cdots, a_k$ be natural numbers. Let $S(n)$ be the number of solutions in nonnegative integers to $a_1x_1 + a_2x_2 + \cdots + a_kx_k = n$. Suppose $S(n) \neq 0$ for all big enough $n$. Show that for all sufficiently large $n$, we have $S(n+1) < 2S(n)$.