The positive integers $a$, $p$, $q$ and $r$ are greater than $1$ and are such that $p$ divides $aqr+1$, $q$ divides $apr+1$ and $r$ divides $apq+1$. Prove that: a) There are infinitely many such quadruples $(a,p,q,r)$. b) For each such quadruple we have $a\geq \frac{pqr-1}{pq+qr+rp}$.