Let $a$, $b$, $c$ and $d$ be positive real numbers with $a+b+c+d = 4$. Prove that $\frac{a}{b^2 + 1} + \frac{b}{c^2+1} + \frac{c}{d^2+1} + \frac{d}{a^2+1} \geq 2$.
Source: Bulgaria EGMO TST 2017 Day 1 Problem 3
Tags: Tangent Line, Inequality, algebra
Let $a$, $b$, $c$ and $d$ be positive real numbers with $a+b+c+d = 4$. Prove that $\frac{a}{b^2 + 1} + \frac{b}{c^2+1} + \frac{c}{d^2+1} + \frac{d}{a^2+1} \geq 2$.