Problem

Source: Bulgaria EGMO TST 2015 Day 1 Problem 3 (out of 3)

Tags: Functional inequality, substitutions, limit, function, inequalities



The function $f:\mathbb{R} \to \mathbb{R}$ is such that $f(x+y) \geq f(x) + yf(f(x))$ for all $x,y \in \mathbb{R}$. Prove that: a) $f(f(x)) \leq 0$ for all $x \in \mathbb{R}$; b) if $f(0) \geq 0$, then $f(x) = 0$ for all $x\in \mathbb{R}$