Problem

Source: Turkey Junior National Olympiad 2022 P4

Tags: geometry, circumcircle



In parallellogram $ABCD$, on the arc $BC$ of the circumcircle $(ABC)$, not containing the point $A$, we take a point $P$ and on the $[AC$, we take a point $Q$ such that $\angle PBC= \angle CDQ$. Prove that $(APQ)$ is tangent to $AB$.