Problem

Source: European Mathematical Cup 2022, Senior Division, Problem 2

Tags: number theory, Divisors, greatest common divisor, Divisibility



We say that a positive integer $n$ is lovely if there exist a positive integer $k$ and (not necessarily distinct) positive integers $d_1$, $d_2$, $\ldots$, $d_k$ such that $n = d_1d_2\cdots d_k$ and $d_i^2 \mid n + d_i$ for $i=1,2,\ldots,k$. a) Are there infinitely many lovely numbers? b) Is there a lovely number, greater than $1$, which is a perfect square of an integer?