Problem

Source: 2017 Latvia BW TST P15

Tags: number theory, Digits



Let's call the number string $D = d_{n-1}d_{n-2}...d_0$ a stable ending of a number , if for any natural number $m$ that ends in $D$, any of its natural powers $m^k$ also ends in $D$. Prove that for every natural number $n$ there are exactly four stable endings of a number of length $n$.

HIDE: original wording Ciparu virkni $D = d_{n-1}d_{n-2}...d_0$ sauksim par stabilu skaitļa nobeigumu, ja jebkuram naturālam skaitlim m, kas beidzas ar D, arī jebkura tā naturāla pakāpe $m^k$ beidzas ar D. Pierādīt, ka katram naturālam n ir tieši četri stabili skaitļa nobeigumi, kuru garums ir n.