Problem

Source: 2015 Latvia BW TST P2

Tags: functional equation, functional, algebra



It is known about the function $f : R \to R$ that $\bullet$ $f(x) > f(y)$ for all real $x > y$ $\bullet$ $f(x) > x$ for all real $x$ $\bullet$ $f(2x - f (x)) = x$ for all real $x$. Prove that $f(x) = x + f(0)$ for all real numbers $x$.