Given a fixed rational number $q$. Let's call a number $x$ charismatic if we can find a natural number $n$ and integers $a_1, a_2,.., a_n$ such that $$x = (q + 1)^{a_1} \cdot (q + 2)^{a_2} \cdot ... \cdot(q + n)^{a_n} .$$i) Prove that one can find a $q$ such that all positive rational numbers are charismatic. ii) Is it true that for all $q$, if the number $x$ is charismatic, then $x + 1$ is also charismatic?