Given is a circle $\omega$ and a line $\ell$ tangent to $\omega$ at $Y$. Point $X$ lies on $\ell$ to the left of $Y$. The tangent to $\omega$, perpendicular to $\ell$ meets $\ell$ at $A$ and touches $\omega$ at $D$. Let $B$ a point on $\ell$, to the right of $Y$, such that $AX=BY$. The tangent from $B$ to $\omega$ touches the circle at $C$. Prove that $\angle XDA= \angle YDC$. Note: This is not the official wording (it was just a diagram without any description).
Problem
Source: IGO 2022 Intermediate P1
Tags: geometry
18.12.2022 10:58
In the figure below we have $AX = BY$ . Prove that $ \angle XDA = \angle CDY$ . Proposed by Iman Maghsoudi
18.12.2022 11:27
$YCD =45$ since $AY=YD$ let $YDC =x$ let $XDA=a$ let $BY=BC=AX =s$ $YC = 2s\cos(x)$(Sine Rule) $YD = \frac{s\cos(x)\sqrt{2}}{\sin(x)}$(Sine Rule) since $\frac{SD}{\sin(45)} = \frac{2s\cos(x)}{\sin(x)}$ Sine Rule Or Pythag Suffice thus $AD= \frac{s\cos(x)}{\sin(x)}$ $\frac{s}{\sin(a)} =\frac{\frac{s\cos(x)}{\sin(x)}}{\cos(a)}$ tan(a) = tan(x) , $a=x$
18.12.2022 17:00
If $O$ is the center of the circle, then $AYOD$ is a square and $\triangle BYO$ is congruent to $\triangle XAD$. Then $\angle CDY = \frac{1}{2} \widehat{CY} = \angle BOY = \angle XDA$.
13.08.2023 16:42
Let $O$ be the center of the circle. $ADOY$ is a square, so $DO = AY = AX+XY = BY+XY = XB$. Also $XB||DO$, so $BXDO$ is a parallelogram. Now $\angle XDA = 90 - \angle AXD = \angle YXD - 90 = 90 - \angle YBD = \angle YOB = \frac{\angle YOC}{2} = \angle CDY$.
15.10.2023 05:21
Let: $O$ circumcenter of $\omega$ So $ OY\perp AB, OC\perp CB$ \[\angle YOC=\angle CYB= \angle YOB = \beta\]But $OY=DA, AX=YB, \text{ and } \angle DAX= \angle OYB = 90^{\circ}$ So $\triangle DAY\cong \triangle OYB$ \[\angle ADX= \angle YOB = \angle CDY = \angle XDA \blacksquare\] As desired
18.10.2023 19:30
Let $O$ be the center of $\omega$. We have, $AX=BY$, $\angle DAX=\angle OYB$ and $AD=OY$. Which implies, $\Delta ADX\cong\Delta BOY\implies\angle ADX=\angle YOB=\angle BOC\implies\angle ADX=\frac{1}{2}\angle COY=\angle CDY$
29.03.2024 00:12
Let $O$ be the circumcenter of $w$. Then, $\angle ADX=\angle YOB=\frac{1}{2}\angle YOC=\angle YDC$.