Problem

Source: Rioplatense L-3 2022 #6

Tags: combinatorics, number theory



In a board, the positive integer $N$ is written. In each round, Olive can realize any one of the following operations: I - Switch the current number by a positive multiple of the current number. II - Switch the current number by a number with the same digits of the current number, but the digits are written in another order(leading zeros are allowed). For instance, if the current number is $2022$, Olive can write any of the following numbers $222,2202,2220$. Determine all the positive integers $N$, such that, Olive can write the number $1$ after a finite quantity of rounds.