Problem

Source: Rioplatense L-2 2022 #5

Tags: number theory, combinatorics



Let $n$ be a positive integer. The numbers $1,2,3,\dots, 4n$ are written in a board. Olive wants to make some "couples" of numbers, such that the product of the numbers in each couple is a perfect square. Each number is in, at most, one couple and the two numbers in each couple are distincts. Determine, for each positive integer $n$, the maximum number of couples that Olive can write.