Problem

Source:

Tags: geometry



Let $ABC$ be an acute triangle with $AB<AC$. Let $D,E,F$ be the feet of the altitudes relatives to the vertices $A,B,C$, respectively. The circumcircle $\Gamma$ of $AEF$ cuts the circumcircle of $ABC$ at $A$ and $M$. Assume that $BM$ is tangent to $\Gamma$. Prove that $M$, $F$ and $D$ are collinear.