The $U$-tile is made up of $1 \times 1$ squares and has the following shape: where there are two vertical rows of a squares, one horizontal row of $b$ squares, and also $a \ge 2$ and $b \ge 3$. Notice that there are different types of tile $U$ . For example, some types of $U$ tiles are as follows: Prove that for each integer $n \ge 6$, the board of $n\times n$ can be completely covered with $U$-tiles , with no gaps and no overlapping clicks. Clarifications: The $U$-tiles can be rotated. Any amount can be used in the covering of tiles of each type.