Problem

Source: 2014 Peru MO (ONEM) L3 p3 - finals

Tags: number theory, divides



a) Let $a, b, c$ be positive integers such that $ab + b + 1$, $bc + c + 1$ and $ca + a + 1$ are divisors of the number $abc - 1$, prove that $a = b = c$. b) Find all triples $(a, b, c)$ of positive integers such that the product $$(ab - b + 1)(bc - c + 1)(ca - a + 1)$$is a divisor of the number $(abc + 1)^2$.