Problem

Source: Latvian TST for Baltic Way 2022 P4

Tags: algebra, polynomial



Let $p(x)$ be a polynomial with real coefficients and $n$ be a positive integer. Prove that there exists a non-zero polynomial $q(x)$ with real coefficients such that the polynomial $p(x)\cdot q(x)$ has non-zero coefficients only by the powers which are multiples of $n$.