On the sides $AB,BC$ and $CA$ of the triangle $ABC$ consider the points $Z,X$ and $Y$ respectively such that \[AZ-AY=BX-BZ=CY-CX.\]Let $P,M$ and $N$ be the circumcenters of the triangles $AYZ, BZX$ and $CXY$ respectively. Prove that the incenters of the triangle $ABC$ coincides with that of the triangle $MNP$.