It's given a right-angled triangle $ABC (\angle{C}=90^{\circ})$ and area $S$. Let $S_1$ be the area of the circle with diameter $AB$ and $k=\frac{S_1}{S}$ a) Compute the angles of $ABC$, if $k=2\pi$ b) Prove it is not possible for k to be $3$
Source: Bulgarian Autumn Tournament 2022 8.2
Tags: geometry
It's given a right-angled triangle $ABC (\angle{C}=90^{\circ})$ and area $S$. Let $S_1$ be the area of the circle with diameter $AB$ and $k=\frac{S_1}{S}$ a) Compute the angles of $ABC$, if $k=2\pi$ b) Prove it is not possible for k to be $3$