Problem

Source: Bulgaria Autumn Tournament 2022

Tags: geometry, fixed



Fix a triangle $ABC$. The variable point $M$ in its interior is such that $\angle MAC = \angle MBC$ and $N$ is the reflection of $M$ with respect to the midpoint of $AB$. Prove that $|AM| \cdot |BM| + |CM| \cdot |CN|$ is independent of the choice of $M$.