Problem

Source: China Girls Mathematical Olympiad 2009, Problem 6

Tags: geometry, similar triangles, China



Circle $ \Gamma_{1},$ with radius $ r,$ is internally tangent to circle $ \Gamma_{2}$ at $ S.$ Chord $ AB$ of $ \Gamma_{2}$ is tangent to $ \Gamma_{1}$ at $ C.$ Let $ M$ be the midpoint of arc $ AB$ (not containing $ S$), and let $ N$ be the foot of the perpendicular from $ M$ to line $ AB.$ Prove that $ AC\cdot CB=2r\cdot MN.$