Problem

Source: China Girls Mathematical Olympiad 2009, Problem 2

Tags: geometry, circumcircle, incenter, angle bisector



Right triangle $ ABC,$ with $ \angle A=90^{\circ},$ is inscribed in circle $ \Gamma.$ Point $ E$ lies on the interior of arc $ {BC}$ (not containing $ A$) with $ EA>EC.$ Point $ F$ lies on ray $ EC$ with $ \angle EAC = \angle CAF.$ Segment $ BF$ meets $ \Gamma$ again at $ D$ (other than $ B$). Let $ O$ denote the circumcenter of triangle $ DEF.$ Prove that $ A,C,O$ are collinear.