The arithmetic function $\nu$ is defined by $$\nu (n) = \begin{cases}0, \,\,\,\,\, n=1 \\ k, \,\,\,\,\, n=p_1^{a_1} p_2^{a_2} ... p_k^{a_k}\end{cases}$$, where $n=p_1^{a_1} p_2^{a_2} ... p_k^{a_k}$ represents the prime factorization of the number. Prove that for any naturals $m,n$, $$\tau (n^m) = \sum_{d | n} m^{\nu (d)}.$$(PP-nine)
Problem
Source: Mathcenter Contest / Oly - Thai Forum 2012 sl-7 https://artofproblemsolving.com/community/c3196914_mathcenter_contest
Tags: number theory