Given a natural $n>2$, let $\{ a_1,a_2,...,a_{\phi (n)} \} \subset \mathbb{Z}$ is the Reduced Residue System (RRS) set of modulo $n$ (also known as the set of integers $k$ where $(k,n)=1$ and no pairs are congruent in modulo $n$ ). if write $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_{\phi (n)}}=\frac{a}{b}$$where $a,b \in \mathbb{N}$ and $(a,b)=1$ , then prove that $n|a$. (PP-nine)
Problem
Source: Mathcenter Contest / Oly - Thai Forum 2012 (R1) p4 sl-12 https://artofproblemsolving.com/community/c3196914_mathcenter_contest
Tags: number theory