Problem

Source: Brazil EGMO TST 2023 #1

Tags: geometry



Let $ABC$ be a triangle with $BA=BC$ and $\angle ABC=90^{\circ}$. Let $D$ and $E$ be the midpoints of $CA$ and $BA$ respectively. The point $F$ is inside of $\triangle ABC$ such that $\triangle DEF$ is equilateral. Let $X=BF\cap AC$ and $Y=AF\cap DB$. Prove that $DX=YD$.