Problem

Source: Mathcenter Contest / Oly - Thai Forum 2008 R1 p8 https://artofproblemsolving.com/community/c3196914_mathcenter_contest

Tags: inequalities, algebra



Let $a,b,c,d \in R^+$ with $abcd=1$. Prove that $$\left(\frac{1+ab}{1+a}\right)^{2008}+\left(\frac{1+bc}{1+b}\right)^{2008}+\left(\frac{1+cd }{1+c}\right)^{2008}+\left(\frac{1+da}{1+d}\right)^{2008} \geq 4$$(dektep)