Problem

Source: Mathcenter Contest / Oly - Thai Forum 2008 R1 p2 https://artofproblemsolving.com/community/c3196914_mathcenter_contest

Tags: algebra, functional equation, functional



Find all the functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the functional equation $$f(xy^2)+f(x^2y)=y^2f(x)+x^2f(y)$$for every $x,y\in\mathbb{R}$ and $f(2008) =f(-2008)$ (nooonuii)