Let $P'$ be the symmetric point of $P$ about $BC$, $F$ be the second intersection of $AI$ and $(BIC)$, $E$ be the midpoint of $BC$, $G$ be the point on $BC$ that $IG \perp BC$
It's simple result that $P' \in (BIC)$ and $F$ is $A$-excenter of $\Delta ABC$
Therefore $\dfrac{FL}{FA}=\dfrac{IL}{IA}=\dfrac{BC}{AB+AC}=\dfrac{1}{2}$
Hence, $L$ is the midpoint of $AF$.
Also $\widehat{IP'F}=90^o \Rightarrow LG \parallel FP'$
Using Thales theorem we have $\dfrac{IG}{GP'}=\dfrac{IL}{LF}=\dfrac{1}{3}$
$\Rightarrow GP'=3IG \Rightarrow GP=3IG \Rightarrow PI=2IG$
Therefore $\dfrac{PI}{IG}=\dfrac{AI}{IL}$, so $AP \parallel LG$
Now it's sufficient to prove $\dfrac{EL}{AP}=\dfrac{EM}{MA}=\dfrac{1}{2}$
Using Thales theorem for $AP \parallel FP'$ we have $\dfrac{AP}{FP'}=\dfrac{AI}{IF}=\dfrac{1}{2}$
Let $H$ be the midpoint of $FP'$. Since $BCP'F$ is isosceles trapezoid, $EH$ is the perdipencular bisector of $FP'$
Therefore $\widehat{EHP'}=90^o$ or $EHP'G$ is a rectangle. Hence $EG=HP'$
Also, $\dfrac{CL}{CB}=\dfrac{AC}{AC+AB}=\dfrac{AC}{2BC} \Rightarrow CL=\dfrac{AC}{2}$
$CG=\dfrac{BC+CA-AB}{2}, CE=\dfrac{BC}{2}$
$\Rightarrow CG+CE=2CL$, therefore $L$ is midpoint of $EG$
$\Rightarrow EL=\dfrac{1}{2}EG=\dfrac{1}{2}HP'=\dfrac{1}{4}FP'=\dfrac{1}{2}AP$ (Q.E.D)